Signal processing is an area of systems engineering, electrical engineering and applied mathematics that deals with operations on or analysis of signals, or measurements of time-varying or spatially-varying physical quantities. Signals of interest can include sound, images, and sensor data, for example biological data such as electrocardiograms, control system signals, telecommunication transmission signals, and many others.
The goals of signal processing can roughly be divided into the following categories.
- Signal acquisition and reconstruction, which involves measuring a physical signal, storing it, and possibly later rebuilding the original signal or an approximation thereof. For digital systems, this typically includes sampling and quantization.
- Quality improvement, such as noise reduction, image enhancement, and echo cancellation.
- Signal compression, including audio compression, image compression, and video compression.
- Feature extraction, such as image understanding and speech recognition.
In communication systems, signal processing may occur at OSI layer 1, the Physical Layer (modulation, equalization, multiplexing, etc.) in the seven layer OSI model, as well as at OSI layer 6, the Presentation Layer (source coding, including analog-to-digital conversion and data compression).
Analog signal processing is for signals that have not been digitized, as in legacy radio, telephone, radar, and television systems. This involves linear electronic circuits such as passive filters, active filters, additive mixers, integrators and delay lines. It also involves non-linear circuits such as compandors, multiplicators (frequency mixers and voltage-controlled amplifiers), voltage-controlled filters, voltage-controlled oscillators and phase-locked loops. View More
.jpg)